Dynamic Modeling of Biotechnical Process Based on Online Support Vector Machine
نویسندگان
چکیده
Due to the complexity and high non-linearity of biotechnical process, most simple mathematical models cannot describe the behavior of biochemistry systems very well. Therefore, dynamic modeling of biotechnical process is indispensable. Support vector machine (SVM) is a novel machine learning method, which is powerful for the problem characterized by small sample, non-linearity, high dimension and local minima, and has high generalization. But currently most support vector machine regression (SVR) training algorithms are offline, which could not be suit for time-variant system. So an improved SVM called online support vector machine was presented to modeling for the dynamic feature of fermentation process. The model based on the modified SVM was developed and demonstrated using simulation experiments. Some models based on SVM were also presented. The result shows that the modeling based online SVM is superior to modeling based on SVW.
منابع مشابه
MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملApplication of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process
Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملModeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique
Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCP
دوره 4 شماره
صفحات -
تاریخ انتشار 2009